Exponents and Radicals

Product Rule for Exponents

$$a^n \cdot a^m = a^{m+n}$$

Simplify:

$$2^1 \cdot 2^0$$

$$5^2 \cdot 5^0$$

Zero Exponent

If a is any non zero real number then $a^0 = 1$.

(Note: 0^0 is not a number)

Simplify:

$$2^1 \cdot 2^{-1}$$

$$5^2 \cdot 5^{-2}$$

Negative exponents

For any nonzero number a,

$$a^{-n} = \left(\frac{1}{a}\right)^n = \frac{1}{a^n}$$

Quotient Rule for exponents

$$\frac{\overline{a^n}}{b^m} = a^{n-m}$$

Simplify the following and write the result using only positive exponents

$$\frac{x^5}{x^2}$$

$$\frac{2 \, x^{\text{--}3} \, y}{4 \, x^{\text{--}5} y^3}$$

Power Rules for Exponents $(a^m)^n = a^{mn}$ $(ab)^n = a^nb^n$ $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

$$(a^m)^n = a^{mn}$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Simplify:

$$(a^2)^{-4}$$

$$(a\,b)^4\,a^{-2}\,b^3$$

Simplify:

$$\frac{\left(-5\,y^3\,z^4\right)^2}{10\,(y^{-4}\,z^2)^{-3}}$$

Radical Notation:

If all of the indicated roots are real numbers, then:

$$a^{m/n} = \left(\sqrt[n]{a}\right)^m$$
 or $a^{m/n} = \sqrt[n]{a^m}$

Simplify:

$$9^{^{3/2}}$$
 $(-8)^{^{2/3}}$

Simplify:

$$\frac{\left(x^2\,y^5\right)^{-1/4}}{\left(x^{-3}\,y^2\right)^{1/6}}$$

Simplifies Radical Expressions:

- 1. The radicand has no factors raised to a power greater than or equal to the index.
- 2. The radicand has no fractions.
- 3. No denominator contains a radical.
- 4. Exponents in the radicand and the index have no common factors other than 1.

Properties of Radicals:

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then:

- $1)\sqrt[n]{a^n} = |a|$ when n is even.
- 2) $\sqrt[n]{a^n} = a$ when n is odd.
- $3)\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$
- 4) $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
- $5) \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$

Simplify: $\sqrt{44}$

Simplify: $\sqrt[3]{16 x^4 y^2}$

Simplify:
$$\sqrt{\frac{2 x^3}{27}}$$

Simplify:
$$\sqrt[3]{\frac{16 x^4}{9}}$$

Simplify:
$$\frac{8}{\sqrt{3} + \sqrt{7}}$$